Evaluating Feature Importance for Re-identification
نویسندگان
چکیده
Person re-identification methods seek robust person matching through combining feature types. Often, these features are assigned implicitly with a single vector of global weights, which are assumed to be universally and equally good for matching all individuals, independent to their different appearances. In this study, we present a comprehensive comparison and evaluation of up-to-date imagery features for person re-identification. We show that certain features play more important roles than others for different people. To that end, we introduce an unsupervised approach to learning a bottom-up measurement of feature importance. This is achieved through first automatically grouping individuals with similar appearance characteristics into different prototypes/clusters. Different features extracted from different individuals are then automatically weighted adaptively driven by their inherent appearance characteristics defined by the associated prototype. We show comparative evaluation on the re-identification effectiveness of the proposed prototype-sensitive feature importance based method as compared to two generic weight based global feature importance methods. We conclude by showing that their combination is able to yield more accurate person re-identification. Chunxiao Liu Tsinghua University, China. e-mail: [email protected] Shaogang Gong Queen Mary University of London, UK. e-mail: [email protected] Chen Change Loy The Chinese University of Hong Kong, Hong Kong. e-mail: [email protected] Xinggang Lin Tsinghua University, China. e-mail: [email protected]
منابع مشابه
On-the-fly feature importance mining for person re-identification
State-of-the-art person re-identification methods seek robust person matching through combining various feature types. Often, these features are implicitly assigned with generic weights, which are assumed to be universally and equally good for all individuals, independent of people's different appearances. In this study, we show that certain features play more important role than others under d...
متن کاملDivide and Fuse: A Re-ranking Approach for Person Re-identification
As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a “Divide and ...
متن کاملPerson Re-identification: What Features Are Important?
State-of-the-art person re-identification methods seek robust person matching through combining various feature types. Often, these features are implicitly assigned with a single vector of global weights, which are assumed to be universally good for all individuals, independent to their different appearances. In this study, we show that certain features play more important role than others unde...
متن کاملPerson re-identification with block sparse recovery
We consider the problem of automatically re-identifying a person of interest seen in a “probe” camera view among several candidate people in a “gallery” camera view. This problem, called person re-identification, is of fundamental importance in several video analytics applications. While extracting knowledge from high-dimensional visual representations based on the notions of sparsity and regul...
متن کاملDeep Person Re-Identification with Improved Embedding
Person re-identification task has been greatly boosted by deep convolutional neural networks (CNNs) in recent years. The core of which is to enlarge the inter-class distinction as well as reduce the intra-class variance. However, to achieve this, existing deep models prefer to adopt image pairs or triplets to form verification loss, which is inefficient and unstable since the number of training...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014